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The hypersonic viscous effect on a flat plate with 
finite leading edge 

By ANDREW G. HAMMITT 
Princeton University, Princeton, New Jersey 

(Received 6 June 1958) 

A method has been developed for calculating the viscous effects of the hypersonic 
flow on the fore part of various bodies. This method takes into account the finite 
leading-edge thickness of the body and the detached shock wave. The calculated 
pressure distributions agree with all experimental results for both air and helium 
over a wide range of Mach numbers and Reynolds numbers. The calculation 
predicts skin frictions of the order of twice those predicted by ordinary boundary- 
layer theory. 

1. Introduction 
The flow about the leading edge of a flat plate at hypersonic speeds has been 

considered in several theoretical and experimental studies. The first mention of 
the problem in the literature is by Becker (1950). In  some experiments made in 
the N.A.C.A. hypersonic tunnel at  Langley Field, it was observed that the 
pressure on the forward surface of a wedge-shaped airfoil was not constant as 
predicted by classical inviscid flow theory, and was above the indicated value 
near the leading edge. It was suggested that the growth of the boundary layer on 
the surface created an effectively curved surface, and rough calculations showed 
that this mechanism seemed to account for the observed results. 

Following this initial work, several authors published analytical papers in 
which they attempted to calculate the flow field caused by the interaction of the 
viscous boundary layer with the inviscid flow behind the shock wave. These 
papers attacked the problem in two ways: the first method, used by Shen (1952), 
Li & Nagamatsu (1953, 1955) and Pai (1953), treated the whole flow region 
between the shock wave and the plate by the boundary-layer equations; and the 
second method, adopted by Bertram (1952) and Lees (1952, 1954a, b) ,  followed 
the suggestion by Becker of dividing the region between shock wave and the wall 
into inviscid and viscous regions. Bogdonoff & Hammitt (1956) pointed out 
that there were some basic inconsistencies in the first method which did not exist 
in the second. Both approaches predicted about the same pressure distributions 
over flat plates. 

Experimental studies of the flow over flat plates, made by Bogdonoff & 
Hammitt (1956) in the helium hypersonic wind tunnel at Princeton University 
a t  Mach numbers between 11 and 15, showed that the pressures on the surface 
were considerably higher than those predicted by the various analytical methods 
previously mentioned. In  later experimental work (Hammitt, Vas & Bogdonoff 
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1956; Hammitt & Bogdonoff 1956), it was found that the leading-edge thickness 
t had an important influence on the surface pressures and that for the higher 
Reynolds numbers based on t the results depended only on x/t, where x is the 
distance along the plate from the leading edge. This result led to the conclusion 
that the pressures on the plate were caused by the inviscid flow field behind the 
finite leading edge and were independent of the viscous effects of the boundary 
layer growth. This inviscid part of the flow field seems to be important for very thin 
leading edges. Since such an effect was not included in the theories for infinitely 
thin leading edges, the results are not applicable when the leading-edge Reynolds 
number is greater than 100 for distances from the leading edge up to 10,00Ox/t. 

Other experimental work by Kendall(1957), carried out in air tunnels at Mach 
numbers of the order of 6, does not show this large dependence on leading-edge 
thickness, and the experimental pressure distributions agree with the viscous 
theories fairly well. The indications are that the inviscid effect of the leading edge 
decreases more rapidly with Mach number than the viscous effect. Hence, the 
inviscid part of the leading-edge problem may be unimportant at lower Mach 
numbers, but may predominate at higher Mach numbers. 

In  the present report, experimental pressure distributions near the leading 
edge of flat plates are presented for a wide range of leading-edge Reynolds 
numbers. An analytical treatment is then presented to account for the Reynolds 
number dependence of these surface pressures. 

2. Experimental studies 
A detailed description of the Princeton helium hypersonic tunnel has been 

given previously by Bogdonoff & Hammitt (1954). This tunnel, using helium as 
the working fluid, is capable of operating at Mach numbers up to 20, and Reynolds 
numbers between 0.5 and 2.0 million per inch. Anaxially symmetric conical nozzle 
with an 0.2in. throat and a 3.75in. working section is used. Because the nozzle 
is not contoured, but conical, there is a continuous Mach number gradient, but no 
region of uniform Mach number. Tests are conducted in this non-uniform region. 

The model used in these experiments is shown in figure 1. It consists of a flat 
plate with a square leading edge. Pressure orifices are distributed along the 
surface, being concentrated near the leading edge and spread out farther back. 
The leading-edge thickness has been measured using a microscope which enables 
the thickness to be determined to within 0.04 x in. Leading-edge thicknesses 
between 0.12 x and 4-4 x 10-3in. were tested at several Mach numbers and 
stagnation pressures. 

The pressure distributions on the flat surface are shown in figure 2. In  this plot, 
the distance along the surface is expressed in units of the leading-edge thickness. 
The surface pressure is expressed as the difference between the measured pressure 
and the pressure at the same point when the model is absent. In  this way, a first- 
order correction is made for the non-uniform pressure in the test section. This 
pressure gradient due to varying tunnel Mach number is actually small compared 
with the pressure gradient measured on the surface, so that this first-order 
correction should be sufficient. Results are presented for a wide range of leading- 
edge thicknesses at a Mach number of 11.4, measured at the leading edge of the 

16-2 
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model. Data for other Mach numbers and more detailed descriptions of these 
pressure measurements are given by Vas (1957). Since the data for M = 11-4 are 
typical, only this one case will be treated in this paper. The results indicate that for 
the larger leading-edge Reynolds numbers, the pressure distributions are almost 
independent of Reynolds -number, but are dependent at 
Reynolds numbers. 

Leading edge cut off square for blunt tests 

smaller leading-edge 

FIGURE 1. Blunted flat plate model used to measure experimental pressure distributions. 
Dimensions are given in inches. 

3. Theory 
For a given geometry, the experiments indicate that at  high Reynolds numbers 

the surface pressure distribution is determined by the inviscid flow behind the 
detached shock wave. At lower Reynolds number, the boundary layer on the 
body becomes thicker, and modifies the effective body shape, so that the flow 
field may be described as a flow about the modified body. If this model is correct, 
the viscous effect can be calculated as the difference between the inviscid flow 
about the effective body, i.e. the actual body modified by the boundary-layer 
thickness, and the inviscid flow about the actual body. Through most of the 
range of Reynolds numbers for which data were presented in figure 2, the viscous 
effect is a perturbation on the inviscid flow. Therefore a first determination of the 
viscous effect can be made by calculating the boundary layer in the inviscid flow 
field and then calculating the modified inviscid flow field about the new effective 
body shape. A higher order solution may then be determined by using this first- 
order flow field, and recalculating the boundary layer. As many successive 
approximations may be made as are required. Because of the difficulty of 
determining the inviscid flow field behind the detached shock wave, the inviscid 
solution obtained from the experimental results will be used. This method of 
solution is essentially the same as was used by Lees & Probstein (1952), except 
they assumed the inviscid flow field about the body to be uniform and the same 
as that ahead of the body. 

It is interesting to note that, with this method, there are no inherent difficulties 
a t  the leading edge. The previous solutions, which assumed an infinitely sharp 



The hypersonic viscous eflect on a jlut plate 245 

leading edge, always introduced a singularity a t  this point. By recognizing that 
the leading edge of any real model is always blunt, the present method eliminates 
this difficulty. The boundary layer grows from the stagnant point solution and no 
singularity is involved. As the leading edge becomes sharper and the mean free 
path of the gas molecules becomes of the order of the leading-edge thickness, the 
flow in this region cannot be treated as a continuum. The model is still correct, but 
different equations are required to describe the flow. 

w i t  

FIGURE 2. Pressure distributions measured in helium on flak plate model 
for various Re,; M = 11.1. 

Boundary-layer solution 
The zero-order inviscid pressure distribution is taken from the experimental 
results for the highest Reynolds number. The growth of the boundary layer may 
be calculated in this flow field by the use of momentum integral techniques. If 
there were no mass in the boundary layer, the entropy along the outside edge of 
the boundary layer would always be equal to the value behind the normal shock 
wave. However, since some flow enters the layer, the entropy at  the edge of the 
boundary layer is continually changing. Far downstream from the leading edge, 
the entropy will approach the free-stream value, since all of the flow passing 
through the strong shock wave will be contained in the boundary layer. 

The usual equations for the boundary layer are 

au au ap a 
ax ay ax ay( z), pu-+pv- = --f- p- 

where u, v are the velocity components parallel to x, y, p is pressure, p is density 
and ,u is viscosity, 

If the equation of motion (1) is integrated in the y-direction (i.e. perpendicular 
to the plate) between 0 and 6 and the continuity equation (2) is used to express 
the value of v at  y = 6, the momentum integral equation is found to be 
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In  isentropic flow, the pressure can be expressed in terms of the velocity by 
means of the Bernoulli relation 

When the boundary layer is growing into a region of rotational flow, the 
entropy changes for each stream line, so the Bernoulli equation cannot be used. 
In  general, for the case of the boundary layer growing in the shock layer behind 
the highly curved hypersonic shock wave, the relation between pressure and 
velocity must include the entropy term. In  the following development, u1 and pl 
will be left as independent parameters and will only be related when the entropy 
on the outside of the boundary layer can be determined. 

Let T denote temperature. If the transformation 

is introduced, equation (3) reduces to the form 

If the viscosity is assumed to follow the law 

and the following quantities &re defined 

F2 = jol t d7, 

then 

( 5 )  

Define h = (Ret/C) (cY,/~)~ and g = x/t, where t ,  the leading-edge thickness, is the 
characteristic dimension of the problem. Substitution of these quantities in 
equation (5) gives 

where the primes denote differentiation with respect to g. If a power-series 
representation for the velocity profile is assumed, this equation can be solved in 
a manner similar to that used by Morduchow & Clarke (1952). 
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A sixth degree polynomial will be assumed of the form 

u/ul = a , + a , ~ + a , ~ ~ + a , ~ 3 + a , ~ Q + a , 7 ~ + a ~ 7 t .  (7) 

The boundary conditions a t  the inner and outer edges of the boundary layer, 
expressed in the (x, &)-plane are 

U U 
7 = 0 ,  - = 0, 7 =  1,  - = 1 ;  

U1 U1 

83 - a73 = 0. 

The second condition at y = 0 follows from the original equation of motion ( l ) ,  
and the third condition comes from differentiating equation (1 )  with respect to y, 
and adding the condition of zero heat transfer at the wall. 

By using the boundary conditions (8), all of the coefficients of equation (7 )  may 
be evaluated in terms of one coefficient. If this is done, equation (7 )  may be 
written as 

(9) u/ul = 2( 1 --+a2) 7 + a27, - ( 5  + 2a,) 74 + 2(3 +a,) 7, - ( 2  +$a,) T ~ ,  

where 

The various integrals used in defining the F's may now be evaluated: 

Fl = 0.1093 + 0.00211a2 - 0.000622ai; 

F, = 0.7143 - 0.01905a2; 

F3 = 2 - 0.400a2; 
F4 = 1 + &(r - 1 )  KMf; 
K = 0.3950 + 0*02116a,- 0*000622a!j. 

In  these equations, a2, the profile shape parameter, is a function of 5. In  the 
expressions for F,, F2 and F4, the terms involving a2 are sma11, so for boundary 
layers where a, is relatively constant, an average value of a, can be used in 
evaluating these quantities. Equation ( 6 )  can then be written 

Equation (10) is now a linear differential equation of the first order which may be 
integrated. In  terms of the quantity G = pO,/pOm, which is a measure of the 
stagnation pressure a t  the edge of the boundary layer, equation (10) gives 

where 2 y K - 1  
Fl 7-1 4 

a = 3+-(0~08571+0~01905a,), b =---A, 

This equation can be used now to calculate the growth of the boundary layer 
along an adiabatic wall once p, ,  U,, T,, M, and G are known as a function of g. 
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Inviscid solution 
In  order to find the inviscid solution, it is necessary to be able to solve the 
problem of flow behind a detached shock wave. While this problem has received 
considerable attention, an adequate solution is not available. We are most 
interested in the flow well downstream from the leading edge, a case treated by 
Lees & Kubota (1956) and Chang & Pallone (1956). While these studies give 
results in general agreement with experimental observations, they were found not 
to be sufficiently accurate, and it was necessary to use empirical results to provide 
the required information. The pressure field behind the leading edge is affected 
by expansion waves from the corner which are reflected back into the body either 
from the sonic line, the entropy discontinuities, or the shock wave, as shown in 
figure 3. This pressure field can be determined from the experiments with rela- 
tively thick leading edges and used as a first approximation for the field at  lower 
Re,. Data are available for Re, up to 60 x lo3. 

Shock 

Waves from corner 

Waves from surface 
or boundary layer 

- 
- -- 

FIGURE 3. Theoretical model illustrating the effect of boundary-layer growth on flow field. 

The change in pressure distribution on the plate caused by the boundary layer 
may be calculated by considering the change in pressure produced by a body of 
slightly altered contour. If this change is small compared with the value for the 
unaltered shape, a linearized approximation can be used. For a first approxima- 
tion, it will be assumed that the boundary condition to be imposed on the inviscid 
flow is that, on the surface of the plate, the flow deflexion angle is equal to the 
slope of the effective body shape. The isentropic pressure-angle relation will be 
used. If this is written in the form of a series, 

only the first term need be used when 19 is small. The assumption that MI 9 1 is 
not correct over some parts of the body, even for M, B 1, so the hypersonic 
approximation to this relation should not be used. 
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The question of how an effective body contour can be found from the boundary- 
layer calculation must be considered. The displacement thickness is essentially 
a concept which satisfies the continuity relations. When waves reflect from a solid 
boundary with a boundary layer, the mechanism is not the same as for reflexion 
from a solid boundary without a boundary layer located at  a distance of the 
displacement thickness from the actual boundary. Since no exact solution to this 
problem is available, and the disturbances are small, the assumption that the 
displacement thickness contour represents an effective body contour can be used 
as first approximation. 

4. Calculation 
Detailed calculations of the effect of the Reynolds number on the pressure 

distribution on a blunted flat plate have been made at M = 11.4 for y = $, since 
experimental results were available for this case. The pressure distribution and 

FIGURE 4. Inviscid pressure distribution and shock shape based on experiments 
at  high Re,; M = 11.4. 

shock shape shown in figure 4 are taken from the experimental results for the high 
Reynolds number case. The first step in the analysis is to calculate the growth of 
the boundary layer in this pressure field. For the initial calculation, the entropy 
on the outside of the boundary layer will be assumed to be that behind a normal 
shock. With the assumption for the PI against x/ t  relation given in figure 4, h can 
be evaluated as a function of x/ t  by equation (1 1). Also S*/S, is a function of the 
shape of the boundary-layer profile and can be found by integrating the velocity- 
density distribution: 
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Therefore, from the definition of A, 

where A and S*/S, are both functions of x/t. This relation is shown as a function of 
x/t  in figure 5. The pressure distribution caused by the effective viscous distortion 
of the body can be found by setting the slope of the displacement thickness curve 
equal to 8 in the first term of equation (12). If this is done, there follows 

where 2 is a function only of xlt. The quantity Ap(Re,)*/pin is shown plotted as 
a function of x/t  in figure 6. 

The static pressure on the flat plate can be written 

FIQURE 

L&( l+Z) .  
P m  Pm 

10,000 

1000 

+- 
", 

8 
u 

0. - 
100 

10 
1 10 100 1000 10,000 

xlt  
5. Boundary-layer displacement thickness as a function of z/t for 

total pressure on the outside of the boundary layer. 
constant 

Therefore, if the experimental values ofplp,, measured as a function of x/t and 
Re,, are divided by 1 + Ap/pin, calculated as a function of xlt, the result should be 
pin/p,, which is only a function of xlt .  This has been done and the results are 
shown in figure 7. The function pinlpm fromfigure 4, on which the calculation was 
based, is also shown in this figure. The discrepancy between these two curves 
indicates that there is some viscous correction even for the large Re, on which the 
curve of figure 4 was based; however, the difference which would be caused by 
this error in the calculation of Ap/phis slight. It should be noted that data are 
available only at the high x/t values for low Fe, and the low x/t  values are for 
high Re,. 

Very far from the leading edge the effects of the viscous and inviscid leading 
edge phenomena must disappear. In  the present solution, the pressure returns to 
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free stream value but the Mach number and entropy at the edge of the layer do 
not. This result is incorrect especially at  high x/t. The entropy can be found for 
any Re, by considering the mass in the boundary layer and tracing the stream line 
back to the point where it crossed the shock wave. The entropy at  the outside of 
the boundary layer will be a function of both x / t  and Re,, so a new calculation 

xl t  
FIQURE 6. Pressure increment caused by boundary-layer displacement thickness as 

a function of x / t  for constant total pressure on the outside of the boundary layer 

xlr 
FIQURE 7. Inviscid pressure distribution as a function of x / t  calculated by dividing the 
measured pressure distributions by the calculated viscous correction for constant total 
head on the outside of the boundary layer. 

must be made for each value of Re,. Such calculations have been made for 
Re, = 132 and 2370. The shock shape given in figure 4 is used for these calcula- 
tions. As has been previously pointed out, the shock shape in the region of the 
leading edge is practically independent of Re,. Once G(x/t, Re,) is established, 
equation (1 1) may be evaluated and a new h determined. It should be noted that 
the change in C will also change the value of ul, T ,  S* and Ap/pl. A new curve of 
p,/p, may then be plotted, based on the consideration of variable G along the 
edge of the boundary layer. This result is shown in figure 8. The points for low 
Re, are changes from the constant G results, and correlate better with the points 
at  higher Re,. Since the experimental results at the same x/t  and over the full 
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FIGURE 8. Inviscid pressure distribution as a function of zit, calculated by dividing the 
measured pressure distributions by the calculated viscous correction for the corrected 
values of total head on the outside of the boundary layer. 

x It 
F I G ~ E  9. Variation of Mach number and total head a t  the outside of the boundary layer 

as a function of xjt a t  various Re,. 

Re, range are not available, it is hard to make a good comparison. The value of 
G and Ml for the various Re, are shown in figure 9. G and Ml do approach the free 
stream values at  high xlt and low Re, as expected. If more accurate results are 
required, these may be obtained by using the values of pressure and entropy 
found by the first calculation, to recalculate the whole system. 

Correlation with previous work 
Lees & Probstein (1962) investigated the viscous part of this problem without 
recognizing the important inviscid effect of the leading edge. Since the inviscid 
effect becomes unimportant at high xlt and low Re,, their work should be a special 
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caseof the present solution. For G = 1 and pin/pw = 1, the present solution gives 

6*/x = 1-21(7- 1)"$ (CIRe,)) 

for the growth of the boundary layer. Lees & Probstein obtained a result similar 
in all respects to this except that the numerical coefficient 1-21 is replaced by 
1.197. This slight difference is caused by the different techniques used in solving 
the boundary-layer equations. The experiments reported by Kendall ( 1957) agree 
with the present theory if pin/pw = 1 and G = 1. These assumptions are probably 
correct for the case of low M and Re,, since the xlt parameter is not necessary to 
correlate the results of this experiment. The present theory provides a means of 
correlating the results of Kendall(l957) made in a hot-air tunnel at  a Mach number 
of about 6 and those obtained in the Princeton helium tunnel at  Mach numbers 
between 11 and 15. 

10 -1 

6- 
B 10-2 

0 
0" 

a 

2 

10-3 

10-4 

Rex 
FIGURE 10. Friction drag, nose drag, and total drag for a blunted flat plate 

at various Re,; M = 11.4. 

Skin  friction and Drag 
Since the present solution is for the adiabatic case, no direct information of heat 
transfer can be obtained, but the friction and drag forces may be calculated. The 
average skin friction parameter has been calculated on the basis of the boundary 
layer solutions found in this analysis. The results are presented in figure 10 as 
a function of Re, and Re,. The results for Re, = 132 and Re, = 2370 are for the 
solution which takes into account the variation of G with xlt .  The curves for 
Re, = lo4 and lo6 are for the solution with constant G, since G shows very little 
variation a t  these Reynolds numbers over the xlt range of this figure. It is 
interesting to note that the curves for the various Re, form an envelope and give 
fairly uniform values as a function of Re, over most of the range. The values of C, 
calculated by conventional boundary -layer theory (Van Driest 1952), leaving out 
the change of inviscid flow conditions caused by both the leading edge and the 
boundary layer, are also shown. The present results give akin friction values of the 
order of twice the results of conventional theory. 

In  addition to the friction drag, there is the pressure drag on the nose of the 
plate. Since the details of the nose affect the flow about the whole body, it is not 
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reasonable to consider just the skin friction term. The pressure drag is also 
presented in figure 10. For the low Re, case (Re, = 132), the nose drag is smaller 
than the skin friction drag for Re, > 4 x 103. For high Re,, the nose drag pre- 
dominates up to Re, of the order of 107. The drag coefficients are only for one side 
of the plate and the pressure drag on one half the blunt nose. The full drag would 
be twice these values for a symmetrical body. The total drags are also shown on 
this figure as the sum of the pressure and friction drags. 

5. Discussion 
These calculations show that by including the effect of the finite thickness of 

the leading edge, it is possible to derive a theory which accounts for the observed 
Reynolds number effects found for hypersonic flow about flat plates. Even down 
to very thin leading edges, the flat plate does not approach the infinitely thin flat 
plate. The flow conditions are shown to depend on the distance from the leading 
edge in terms of leading-edge thickness and the Reynolds number. 

Some previous theoretical work had treated a strong interaction region where 
the pressure changes caused by the viscous forces are much larger than the inviscid 
pressures. If the effects of finite leading-edge thickness are considered, there need 
be no such region. The present method can be used over the entire body. The 
inclusion of the stagnation point flow, which must occur in any real case, allows 
a boundary layer with a finite initial rate of growth which need not cause large 
pressure changes. The strong interaction region only occurs at low values of Re, 
where the growth of the boundary layer is rapid. An understanding of this flow 
picture eliminates many of the difficulties in treating the nose region which were 
encountered in the previous work. 

The present analysis is a rough calculation designed to show the effects of the 
various significant parameters. Unfortunately, it was necessary to use numerical 
techniques to solve the boundary layer equations; however, an analytic solution 
cannot be expected until it is possible to solve the inviscid blunt-nosed problem 
so that the viscous solution need not be based on empirical results. The results 
presented are for the restricted case of M = 11-4 and y = 9. These values were 
chosen to match the available data. Calculations over the full range of Mach and 
Reynolds numbers have not been attempted. This technique can be used to 
calculate the viscous effect for any case in which the inviscid solution is known 
and the viscous correction can be considered a perturbation on the inviscid 
solution. The method can be applied to any two-dimensional plane or axially 
symmetric body once the basic inviscid pressure distribution is known. For plane 
two-dimensional bodies, the only change would be in the basic inviscid pressure 
distribution. For axially symmetric bodies, the boundary-layer solution would be 
modified to include the effect of the change of radius. 

6. Conclusions 
1. The Reynolds number effects on the pressure distribution and flow para- 

meters about a body in hypersonic flow can be predicted by conventional 
boundary-layer theory once the inviscid flow is known. 
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2. There is no conceptual difficulty in analysing the flow near the leading edge 
if the real case of a finite leading edge is considered. 

3. The skin friction on the surface of a flat plate is of the order of twice the skin 
friction calculated by conventional flat plate boundary-layer theory. The skin 
friction is relatively independent of Re,, but the total drag increases rapidly 
with Re,. 

The present study is part of a programme of theoretical and experimental 
research on hypersonic flow being conducted by the Gas Dynamics Laboratory, 
James Forrestal Research Center, Princeton University, Wright Air Develop- 
ment Center of the United States Air Force, under Contract No. AF 33(616)-2547, 
with Fred L. Daum as project engineer. 
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